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Background

The purpose of this research effort was to see if displacement or mixcd

version hp finite elements in time could be used to efficiently solve the

rotor trim problem. At the end of tile first year of effort it appeared the

funding would end. Therefore, we prepared a "Final Report" that

summarized tile first year's effort. The effort included all of the linear

results for flap and flap-lag with both displacement and mixed elements.

Second-Year Effort

Howevcr, it turned out that sccond-year funding did become available.

Thus, the "Final Report" became a Semi-Annual Report. Therefore, the

report given here summarizes the second year's effort which is the solution
of tile nonlinear trim problem. As it turns out, this was also successful.

The conclusion of our work, thercfore, states that finite elcments in time

are a good way to solve rotor trim prol)lcms for a moderate numbcr of

degrccs of frcedom. Thc technical contcnt of this second-year cffort "
follows.
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INTRODUCTION

t:ini1_ _ Eleme]ll iii Time has been proveil Io I)(, a l_owerful aliernaliw" stralegy

t'or roi,_r crafl lrim probl¢'m, l{ecentlv. Finite [']Iemetlt lklet.hod in _]'ilne has I)een

w,'II d,'v,'l,>l,¢'d ill \{irioll_ \er>ioiis like' i ililc-ixiarciliiit franieworti. (;,,lerlcili [ra ilie\v(irt<..

l_t51('i,_'li-t;il>: [i';llllCW, iri,; ;tllll IlliV'(1 t_)rliiU{alioli. Ilr. t),t'leis atl<l XIr. t[(>_i apltlied

lili.- IIICl }lt>(I Oil lh_, roi ort'ra fl I rilii probleni io ot)laill ]inea.rized solutions and <)})iaitietl

a very good result. Tiffs I)rojecl is aimed to expand the applicalion in rotorerafl trini

problenl from linearized solution to nonlinear sohition.

The rotorcraft trini pro|)lem is to find a period solution for period-coefficient, differ-

enlial equations subject lo side constraints that certain force and momentum balance

equations have to be zero. There are certain free ( or trim ) parameters that must

be chosen to meet these side constraints. A lot. of successful works have been done

bv Dr. Peters and Mr. Hou in this area. They linearized the flap-lag equation and

compared the results of Fourier series analysis, displace method and mixed method

for accuracy and efficiency. Finite Element in Time presented a strong potential to

outperform the conventional Fourier series analysis. Therefore, it is interesting to find

out if Finite Element in Time can further provide a good flap-lag nonlinear sohtion.

In this project, we use the displacement inethod tot the hovering flight.
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NONLINEAR EOUATION

The model which we use is the same as in Ref [1] [2]. The schematical

model is shown in Fig 1. The reverse flow effect is neglected. We also

assume that the drag coefficient Cao is small with respect to the lift curve

slope a.

The euations of motion of this model are [2]:

I
fl+sinfl cos(l + +(p-1)(t_ -_pc)+Z_= F[l?d?

"° I 1
cosZfl _ _ 2 sin fl cos fl l + _) _ +W _ + Z ( fl-flp_ ) = cos fl ff _ d_

(1)

For hovering flight

F--#= _[-_2 sin 0--at _ip ( cos O+ ._C__)]

-at = ( 1 + _ ) _ cos _

)

-ap= + Z cos

P ;1+ +R(cog co_)sin20

Z =R--g--(w_-co_)sin20
2A

A =1 + R'(1-R )sin20 ( oo_-(.o_ )2[ oo_ (o_

1/K N - 1/K_
R=

( 1/KI3B+I/KN4)-(I/K_B+I/K_)



R __.

I/K_B- I /K_

( I/K#B+I/K_I)-(I/K(,B+I/K(.II)

When O=OorR=0,

and inplane. Then

P= 1 +og_=p

Expanding 0 as

there is no elastic coupling between flap

o_ = o9_ Z =0

O= 0o+ Os sin _ + Oc cos tp

By small angle assumption

COS fl= 1- lfl 2

sin [3-- [3

cos O =1-102

COS2fl = 1 - [j2 COS3_ = 1 - _2 /_ 2

sin 2/3 = 2fl

sin 0 = 0

Substituting

nonlinear equations

Where:

0 cos2_

all these terms into equation (1), we obtain the

for flap-lag forced response
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)

_c1=

<_+ 2 )_cos fl<cosO+-C_)

,E- -_ cos fl ( cos O- )

+_(1-_cos2_ sinO- lsin 2fl)

+_ cos2_ sinO

7 cos2_ _. (cos 0 --_-_)-sin2_

"7
fl _ cos fl ( cos O+ _-_ )

_(1-_cos2_sin O -lsin 2[3 )

• 7Cao
+ _-ff-_-cos3fl

[ K] =

7:
P -goe

7'
(cos 0 +-_- )l+_ [ _-_sin O- -6/],

Y 1 2
-g:t [2o/3/_+o/j(o - o/3p_,c)

+ 1 0/50¢(]
2

r, oaz+g

7 /q.2(cos O-_-_)

- _ /q,sin O - -ff---ff-j

+ ½ooo¢¢1

7 o_• .z-_-

-dr i½o_c+o_o-o:.)
+1 o_o_¢]

7_ OfW +-_

+ ½o:o:

Y - g 1 - 2+ Cao }

The constraint equations for trim condition are

(3)



_1_

1__

,2x

_cos td t = 0

,_tR

_6 sin t d t =0

(4)

(5)

When thrust is specified, equation (3) can be replaced by

2n

1 I CT(t)dt =CTo2_
(6)

Where

1

ICT(t ) = ( x

For hovering, _=0

CT(t)= x2(O-_)-x&]dx

DISPLACEMENT METHOD [11

For displacement method, we begin with the Hamilton's law of

varying action

(6L+57rQnc)dt - _i _qil_ =0
i=1

(7)

With a weak constraint of momentum, the

principle becomes

L d t + o_/Vncd t- 8qi.eil[ t,= 0

i=1

hamilton's weak

(8)
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Where the trailing term

n

]_ Sqi.eil_
i=l

can be thought of as the virtual action t_A entering ( or leaving )

the system at time ti and tt

For a typical spring-damp-mass oscillator with unit mass

L= T- v= l _c2-1k x 2

oq'V_ = ( F- C x ) 6x

Then equation (8) becomes

i'I(Sc"+ c Jc + k x- F ) _x d t-[(Py-2(tf))(_x- (Pi-Jc(ti))_x]=O (9)

For this equation to be valid for any &, we must have

j( + c.fc + k x = F

Pf= Jc(tf)

Pi=x(ti)

for periodic problem, ti=O, tl=T, x(O)=x(T) is a strong condition

and _t(0)=4(T) is a weak condition enforced through Po=PT. By

introducing Lagrange multiplier, _, , equation (8) becomes

r _ C.x';& kx Sx + F Sx ) d t - _e[ gvc(T) - t_0c(0)] = 0 (10)
(

where /_e=Po=Pr

)
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For the test and trial functions, there are certain geometric

boundary condition which must be satisfied[l].

STRATEGY

To solve flap-lag problem by displacement method, we use

Galerkin's scheme, first, we choose the integrals of legendre

polynomials Pj(x) as shape functions for /3, (, 613 and 6( [4]

/1 n

j=l j=l

n tl

j=l j=t

(11).

l-r/ 1+7/

¢1- 2 _- 2 (-1<7/<1)

¢j+1 =_I"Pj-l(x) dx
j=2,3,4,...,n-1

A. One Element Quasi-Trim Case

)

For this case, the collective and cyclic pitch angles are given,

O=Oo+Ossint+OcCOSt , so that tic,fls--0 to minimize rotor hub

moment. Multiplying equation (2) by Oi (i=l,2,...,n) on both

sides and integrating over [0,2_]

i i[fl(Oi+ C11fl_)i + C12(_i + Kllfl(_i+ KI2_'_i] dt = Fl(Oidt
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I [COS2_'_¢)i+ C213 ¢i + 022_"¢i + K21/50i + K22_"0il d t = F2dPid t

Set

change

13(2_r) = _ 0 ) = P# = ;t#

5( 2_r)cos2fl ( 2;,r) = _'(0 )cos2fl ( 0 ) = P_= 2_

variables

t=zc(,+l) -l<a:<l

(-1_ d__ d _1(1,
d t 7r d r Jr

After integrating by parts, we get 2n nonlinear equations of qi,

Pi, &land Z_ (i=l, 2,...,n). The other two equations which are

required to close the system come from the periodic constraint

fl(O)=fl(T ) _*(0)=_'(T)

n n

_ [¢i(- 1 )- _bi( 1 )]qi = 0 _ [¢i(- 1 )- _i( 1 )]qi = 0
i=1 i=1

The final system of nonlinear equations is

)

[ A(fl.¢.fl'.¢')]2,+2.2n÷=I

(ql '

qn

Pl

Pn

2n+2, 1

= {B}2n+2. 1
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The matrix [A] includes fl, (, fl'and (', which are functions of

unknown variables qi and Pi. Therefore a iteration process is

required. The first guess for qi and Pi is not difficult. In fact,

the stability of this system of nonlinear equations is

tremendous. Even if the initial values of qi and Pi. are set to be

equal to 100 (although there is no physical meaning), they will

converge to the correct result within a few steps.

B. One Element Trim case

)

In this case Oo, Oc and Os are unknowns to be found such that tic

=fls=O, So we have 2n+5 unknowns. Notice that in equation (2),

the Oo, Oc and Os are included in {F}. We need to extract them

from {F} and move them to the left hand side. The equations

then become

Where

+

+ IT (O)} 00 + sin t{T (_} Os + COSt IT (O)} Oc= {FT}
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Following the same scheme, we will obtain 2n+2 equations. The

trim condition, provides the extra 3 equations to close the

system.

C. Multi Element Trim Case

)

We divide [0,2n] into M elements, each has a length of 2n/M,

Within the m thelement let

n n

j=l j=l

By continuity condition

/_°")(t,,,+0 =/_°"+_)(t,,,+1)

By periodic condition

_"(m)(tm+1)= _'(m+l)(fm+l)

/3(1)(tl)= fl(M)(tM) _.(1)(q)= _(M)(tM )

Also we set the nodal momenta to be

[3(m)(tm)= fl(m-l)(tm)= A_rn)

_(m)(tm)cos2[3(r,a)(tm) = _(m-l)(tm)COS2[3(m-1)(tm ) = _,_m)

/_ (1)(,1)= ]_ (M)(tM+I)= _,_1)

_(1)(tl)COS2fl(1)_tl ) = _(M)(tM+I)COS2_(M)(tM+I ) = &_l)

Then the trailing terms in equation (12) become

m=l,2,.. -,M

m=l,2,.--,M-1

m = 2,3,..., M
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M-1

rn=l

M-I

,, (rn+l) + _M)_i ( - 1)-,_ 1 1)E [A_m)¢i( _ 1)- A,; ¢i( 1)1 )¢i(

m=l

The trim constraint for multi elements with (N-l) th order

polynomial are [1]

I

M N

E E q:m)dpjC°S[-_(_+2m-1)] dr=O

m=l j=l

!

_ I _q:m)(ojsin[_(r+2m-1)]dr=Om=l j=l

M N ]A . '

E E q:m +_,tn(yr+ 2m-1)) Cj+2-_t.t2sin[2--K(r+ 2m-1)]¢./ dr
_m"

m=l j=2

-2 _ 0°(31 + _ /.tz)-bt_zOs= -
4 reCTo

a(Y
-zc;L

The final system of nonlinear equations includes 2M(N+l)+3

unknowns. They are q}")' p[m), 2_m), _,_"*), 00, 0c and 0s.

RESULT AND CONCLUSION

)

The results are very close to those obtained by other methods.

This varifies the validity of this method. As far as the flap lag

problem is concerned, there is no restriction on the choice of
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initial values. They always converge to the final results within

a few iteration steps. Also notice that the results are almost

independent of the number of elements and the order of

Legendre polynomials. Therefore we can conclude that, in

solving this kind of nonlinear problem, the displacement

method has a very good stability. Since the flap lag problem in

hovering flight is a very much simplified case compared with

the flap lag problem in forward flight, additional work is

required to investigate the performance of displacement

method in forward flight condition. It is also a interesting topic

to see how the mixed method behaves in such cases.

no.Elements/pol.order 1_/100 _1000 00
1 4 9.6825644 -6.3044904 0.2970519 1.9670248

1 6 9.6825607 -6.30 ;5006 0.2970519 1.6492519

1 8 9.6825600 -6.3044997 0.2970519 1.6540506

2 4 9.6825629 -6.3045016 0.2970519 2.5363567

2 6 9.6825629 -6.3045030 0.2970519 1.1276192

2 8 9.6825622 -6.3045025 0.2970519 9.1574357

5 4 9.6825719 -6.3045076 0.2970521 1.0911533

8 4 9.6825704 -6.3045053 0.2970520 -6.8381580

8 8 9.6825697 -6.3045057 0.2970520 -1.6251148

0s/1000000 %/1000000
-1.7705892

-1.1021315

-1.0808242

-1.4900319

-9.1521546

-1.0367157

-9.4596531

2.0519121

-3.1796359

)
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